
UCRL-CONF-221315

DOs and DON'Ts in Developing
In-House Industrial Hygiene
Software

C. Chen, T. Lowe

May 11, 2006

American Industrial Hygiene Conference and Exposition
Chicago, IL, United States
May 13, 2006 through May 18, 2006



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



ISM

DOs and DON’Ts in Developing In-House 
Industrial Hygiene Software

C. Chen, T. Lowe
Lawrence Livermore National Laboratory

Livermore, CA

This work was performed under the auspices of the U.S. Department of Energy by University of 
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. 

UCRL-CONF-221315 



ISM

Introduction

• Is NOT!:
– Justification to design in-house or to 

procure commercial software product
– Justification for project resources
– Justification for Return on Investment
– The only process for software 

application design



ISM

Introduction (cont.)

• Assumes:
– Management buy-in
– Justification and decision has been 

made to design in-house software 
application

– Adequate resources are available for 
software project lifecycle



ISM

Introduction (cont.)

• Historical Background
• Project Initiation
• Project Issues
• Software Implementation
• Software Tools
• Lessons Learned – DOs and DON’Ts
• Summary



ISM

Historical Background

• STS – Sample Tracking System
• First attempt to integrate multiple 

spreadsheets, databases and paper 
records to electronic records

• Records stored in multiple locations and 
formats

• Central file server, early 1990’s technology



ISM

Historical Background (cont.)

• STAR Phase I – Sample Tracking And 
Reports

• To improve on the shortfalls of STS 
system
– Add more data fields to the data entry 

screens
– Add functionality to meet changing 

business needs



ISM

Historical Background (cont.)

• To improve on the shortfalls of STS 
System (cont.)
– Improve data entry integrity using 

validated lists
– Add audit trail function to track entry 

and changes
– Add system and data security



ISM

Historical Background (cont.)

• Original project was a “stand alone”
application that morphed into an integrated 
network of applications



ISM

Historical Background (cont.)



ISM

Project Initiation

• Facilitated sessions where all stakeholders 
provided input in 8-hour sessions

• Consensus-driven, all the stakeholders got most 
of their needs met

• After 2 sessions, all “requirements” were 
gathered

• Programmers went away and created end product 
to meet requirements with very little interaction 
or feedback



ISM

Project Issues

• Institutional culture
– No bottom line for $$$ with dedicated 

programming staff versus job shop
– Data owners did not want to distribute 

data electronically
– Business requirements driven by audit 

findings
– Did not have full management buy-in



ISM

Project Issues (cont.)

• End user issues
– Multiple management chains

• No single authority for decision making or path for 
conflict resolution

• No accountability
– Minimum computer literacy level not defined
– Availability of resources not consistently allocated

• PCs vs Mac vs terminal servers (software, hardware 
and operating systems)

• Personnel for participation in project development



ISM

Project Issues (cont.)

• Requirements often not realistic and/or measurable
– Ex. “Easy to use”, “Intuitive”

• Led to different levels of expectations
• All requirements had same priority ranking

– “must have”, “should have” or “nice to have” were 
ranked with the same priority of importance

– Majority of requirements were “nice to have”
• “fantasy” because these were NEVER used by 

requesters
• Technology was not available



ISM

Project Issues (cont.)

• Stakeholders required data entry screens to use the “One 
size fits all” approach
– Industrial Hygienist, Health Physicists, Health and 

Safety Technicians use the same screens
– Various sampling types were entered using the same 

data entry screen
– Strong resistance to have multiple screens with specific 

functional needs
– Functionality requirements of each stakeholder were 

mutually exclusive
• Ex. - one data field required by one user would not 

function for any other user



ISM

Project Issues (cont.)

• Lack of ownership of the application resulted in 
finger pointing when application had problems

• Data entry screens based on existing 
paper/manual formats
– Inefficient use of screen capability
– Users were accustomed to “scratch pad”, line-

out and write-in any changes in paper margin



ISM

Project Issues (cont.)

• No requirements specified by stakeholders for 
data output
– Part of culture was to enter “nice to have” data
– Database was considered data storage
– No thought was given to meaningful data 

retrieval
– Data for reporting was hand-entered into 

personal spreadsheets, “This is my data and 
not for anyone else to see”



ISM

Software Implementation

• Hardware limitations
– Due to high costs, desktop computers were 

not widely available
– PCs, Macs and VAX/VMS terminals using 

central server technology
– Developed to lowest common denominator 

(vt220 monitor)
• Software limitations

– Terminal emulators for multiple OS platforms 
with multiple versions for each OS



ISM

Software Implementation (cont.)

• Affects on return on investment for hardware and software
– Higher costs to support multiple hardware and software 

platforms
• Need more support personnel with expertise

– High costs for programmers to create a specific data 
entry screen for each platform and OS version

• System migrations cannot be accomplished for 
legacy systems with unsupported hardware and 
software

– Large resources required to test for each platform/OS 
version for a given screen

• Often for a single user



ISM

Software Implementation (cont.)

• Lack of management buy-in
– Testing had low participation

• Participating testers got their needs
• Users who opted not to test were most unhappy 

when software released for production user
– Training was offered

• When optional, few participated in training
• When training was mandatory, complaints, selective 

comprehension usually had same result as optional 
training



ISM

Software Implementation (cont.)

• Software documentation
– Documentation provided
– Rarely used, most user “wing it”
– Not enough resources to keep documentation 

current
• External data input and output

– Analytical laboratories
– Result reports
– “paper form” model does not address 

electronic data processing, “free type” data 
entry not optimal for queries



ISM

Software Development Tools

• CASE Tools (Computer Aided Software 
Engineering)
– Provided easy mechanism for multiple 

developers to keep same “look and 
feel” for each screen

– Repository for documenting 
programming parameters for 
consistency



ISM

Lessons Learned – DOs and DON’Ts

• DON’T try to please everybody
– Do use ranking system for requirements

• DO use K.I.S.S. philosophy
• DO have project manager

– Knowledgeable about business requirements
– To enable executive decisions when there are 

conflicting issues
– Has trust of senior management and credibility with end 

users
• DO use formal project management methodology

– Ex. IEEE



ISM

Lessons Learned – DOs and DON’Ts
(cont.)

• DO consider external data input and output
– DON’T design a “garbage in, garbage out” program
– DO design database to provide structure for meaningful 

generic data retrieval (Ex. - reports)
• DO have minimum standards

– DON’T have multiple hardware platforms
– DO have common software

• Browsers
• Operating systems
• Versions

– DO have minimum computer literacy levels for end 
users



ISM

Lessons Learned – DOs and DON’Ts
(cont.)

• DO have formal testing plan
– DON’T release without documentation that 

acceptance criteria was met
– DO follow standards for testing and 

documentation (Ex. IEEE, NQA-1, etc)
• DO have a training program in place

– DON’T allow access to application to users 
that have not completed training program

– DO keep training material updated



ISM

Lessons Learned – DOs and DON’Ts
(cont.)

• DO apply Software Quality Assurance principles
• DO use formal documentation (Ex. IEEE 

standards for guidance)
– DO document application requirements (data 

input, output usage and data sharing), also 
minimize “change orders”

– DON’T perform maintenance requests without 
documentation

– DO document “bug” fixes
– DO perform verification and validation



ISM

Conclusion

• Old issues with development never go away, just 
return in different form
– What is state of the art today is tomorrow’s 

legacy
– Address hardware and software issues
– Provide adequate support personnel
– Ensure management support level



ISM

Conclusion (cont.)

• Keep an open mind, anticipate issues
– New applications merge with current 

applications
– New business requirements may require 

modification of current software or migration 
to new system

• Remember and apply lessons learned
– Don’t “reinvent the wheel”



ISM

Questions

Chuck Chen
925-422-8098
chen2@llnl.gov

Tim Lowe
925-422-8430
tlowe@llnl.gov


